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Abstract

At the upper endpoint of the photon energy spectrum in � ! X, the

standard NRQCD power counting breaks down and the OPE gives rise to

color-octet structure functions. Furthermore, in this kinematic regime large

Sudakov logarithms appear in the octet Wilson coeÆcients. The endpoint

spectrum can be treated consistently within the framework of a recently de-

veloped e�ective �eld theory of collinear and soft particles. Here we show

that within this approach the octet structure functions arise naturally and

that Sudakov logarithms can be summed using the renormalization group

equations. We derive an expression for the resummed energy spectrum and,

using a model lightcone structure function, investigate the phenomenological

importance of the resummation.
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I. INTRODUCTION

Early theoretical analyses of heavy quarkonium decay were based on the color-singlet
model (CSM). The underlying assumption of this model is that the heavy-quark{antiquark
pair has the same quantum numbers as the quarkonium meson. (For example the b�b that
forms an � must be in a color-singlet 3S1 con�guration.) One consequence of such a restric-
tive assumption is that theoretical predictions based on the CSM are simple, depending on
only one nonperturbative parameter. The quantities �rst calculated in the CSM were the
inclusive rates for quarkonium to decay into leptons and into light hadrons [1]. Subsequently
the direct photon spectrum in inclusive radiative quarkonium decays was calculated [2].

In recent years the simple CSM has been superseded by a nonrelativistic e�ective theory
of QCD (NRQCD) [3,4]. Inclusive decays of quarkonium are now understood in the frame-
work of the operator product expansion (OPE), supplemented by the power-counting rules
of NRQCD. In this formalism the direct photon spectrum of � decay is

d�

dz
=
X
i

Ci(M;z)h�jOij�i ; (1)

where z = 2E=M , with M = 2mb. The Ci are short-distance Wilson coeÆcients which can
be calculated as a perturbative series in �s(M), and the Oi are NRQCD operators. NRQCD
power-counting rules assign a power of the relative velocity v of the heavy quarks to each
operator and organizes the series. The series may be truncated at any order with omitted
terms suppressed by powers of v. For S-wave mesons the formally leading-order contribution
is the color-singlet operator, which is related to the wavefunction at the origin. Thus for
S-wave decays one recovers the CSM at leading order in v. At higher orders in v color-octet
operators need to be included.

However, the picture of the photon spectrum in �! X decay which emerges is much
richer than the naive expectation that the color-singlet contribution is leading [5{7]. At low
values of the photon energy, fragmentation contributions to �(�! X) are important [8,5].
The situation at large values of the photon energy is even more interesting, because both
the OPE and perturbative expansion break down. The breakdown of the OPE was �rst
addressed in Ref. [7]. It was shown that the color-octet contributions, which give rise to a
singular contribution at maximum photon energy, become leading for large photon energies.
The singular nature is smeared by a nonperturbative structure function, which tames the
endpoint behavior of the photon spectrum. The breakdown of the perturbative expansion
gives rise to so-called Sudakov logarithms which have to be resummed. In a recent work [9]
it was pointed out that the leading Sudakov logarithms cancel in the CSM. However this is
not the case for Sudakov logarithms in the color-octet contribution.

Both the breakdown of the OPE and the appearance of Sudakov logarithms are symptoms
of the same disease: NRQCD does not contain the correct low energy degrees of freedom
to describe the endpoint of the photon spectrum. It does not contain collinear quarks and
gluons. A theory constructed from the appropriate degrees of freedom was developed in
Refs. [10,11]. In those papers the theory was applied to the decay of a single heavy quark
to light degrees of freedom. It was shown that the renormalization group equations (RGEs)
in this theory sums Sudakov logarithms. In addition, for inclusive decays at the endpoint,
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the nonperturbative structure function arises naturally from a modi�ed version of the OPE.
Here we apply the theory to the color-octet contributions to radiative � decay. In Section II
we discuss the leading contributions in the endpoint region and motivate perturbative and
nonperturbative resummation. In Section III we sum Sudakov logarithms using the RGEs
in an e�ective �eld theory. In Section IV we introduce a phenomenological model for the
shape function, convolute it with the resummed spectrum, and show how this changes the
color-octet contribution to the spectrum. In Section V we conclude.

II. LEADING ORDER RESULTS

The inclusive radiative di�erential decay rate of � can be calculated using the optical
theorem. This relates the decay rate to the imaginary part of the forward matrix element
of the time ordered product of two currents

d�

dz
=
M2

8�2
z h�jImT j�i ; (2)

where we have used nonrelativistic normalization for the states: h�(P 0)j�(P )i =
(2�)3Æ3(P 0 � P ). For large momentum transfer the time ordered product can be expanded
in terms of local operators giving

d�

dz
=
X
i

Ci(z)h�jOij�i : (3)

The Wilson coeÆcients, Ci(z), can be calculated perturbatively as a series in �s(M). The
parametric size of the long distance matrix elements are determined by power counting in
NRQCD, but to obtain quantitative results these matrix elements have to be extracted from
experiments or lattice calculations.

At leading order in the NRQCD v expansion, only the color-singlet, spin-triplet operator

O1(
3S1) =

X
p;p0

[ yp0�i��p0] [�y�p�
i p] (4)

contributes, with the leading order Wilson coeÆcient

C
(0)
1 (3S1)(z) =

128�2s �e
2
Q

27M2
�(1� z)

�
"
2 � z
z

+
z(1 � z)
(2� z)2

+ 2
1 � z

z2
log(1 � z)� 2

(1 � z)2

(2 � z)3
log(1� z)

#
; (5)

where eQ = �1=3 for �. This is the CSM result [2], with h�jO1(3S1)j�i � (3=2�)jR(0)j2,
where R(0) is the radial wavefunction at the origin. The �rst color-octet contributions to
(3) are suppressed by v4 relative to this color-singlet contribution. There are two operators

O8(
1S0) =

X
p;p0

[ yp0 T a ��p0] [�y�p T
a p] ;

O8(
3P0) =

1

3

X
p;p0

[ yp0 p
0 � � T a��p0] [�y�p p � � T a p] ; (6)
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with leading order Wilson coeÆcients [5]

C
(0)
i (z) = ~C

(0)
i Æ(1� z) ; (7)

where

~C(0)
8 (1S0) =

16�s � e2Q�

M2
;

~C
(0)
8 (3P0) =

448�s �e
2
Q�

M4
: (8)

Since the color-octet Wilson coeÆcients are enhanced by a power of �s(M)=� relative to the
color-singlet one, the overall suppression of the color-octet contribution is �v4=�s(M) � v2,
where we have used that numerically �s=� � v2.

The singular nature of the coeÆcients (7) is an indication that the OPE is breaking down.
We can obtain a rough estimate for the value of z at which the octet contributions become
of order the color-singlet contribution by smearing the perturbative spectrum over a small
region near z = 1. Integrating over 1 � v2 < z < 1 gives a color-singlet contribution that
scales as �2s(M)v2 and a color-octet contribution that scales as �s(M)�v4. Thus, the ratio
of octet to singlet in this region of phase space is �v2=�s(M) � 1, making the color-octet
contribution of the same order as the color-singlet one.

It was shown in Ref. [7] that in precisely this endpoint region the OPE breaks down
and an in�nite set of operators have to be resummed into lightcone distribution functions
fi(k+).1 Each structure function gives the probability to �nd a b�b pair with the appropriate
quantum numbers and residual momentum k+ in the �. For the color-singlet contribution
the structure function can be calculated using the vacuum saturation approximation. It
simply shifts the maximal photon energy from 2mb toM� [7]. The color-octet contributions,
however, give rise to two new nonperturbative functions at leading order. At higher order
there are an in�nite number of additional structure functions, so the di�erential decay rate
in the endpoint region is

d�

dz
=
X
i

Z
dk+Ci(z; k+)fi(k+)h�jOij�i : (9)

Another e�ect one encounters in the endpoint region is the appearance of Sudakov log-
arithms in the Wilson coeÆcients, which ruin the perturbative expansion. Consider, for
example, the Wilson coeÆcients for the color-octet operators at next-to-leading order in �s.
In the z ! 1 limit they are [5]

C
(1)
8 (1S0)(z) =

�s
2�

~C(0)
8 (1S0)

"
�2CA

 
log(1 � z)
1� z

!
+

�
�
23

6
CA � nf

3

��
1

1 � z
�
+

#
;

C
(1)
8 (3P0)(z) =

�s
2�

~C(0)
8 (3P0)

"
�2CA

 
log(1� z)

1� z

!
+

�
�
23

6
CA � nf

3

��
1

1� z

�
+

#
: (10)

1This is very similar to the behavior of the OPE for B ! Xu`�� at the endpoint of the lepton

energy spectrum and B ! Xs at the endpoint of the photon energy spectrum [12].
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If these coeÆcients are integrated over the shape-function region (1� v2 < z < 1), then the
�rst plus distribution on the right-hand side gives rise to a double logarithm, log2 v2, while
the second plus distribution gives a single logarithm, log v2. Both of these are numerically
of order 1=�s. This clearly ruins the perturbative expansion. Therefore, to obtain a well
controlled expansion, these logarithms must be summed.

III. SUMMING SUDAKOV LOGARITHMS

The NRQCD power-counting rules break down as z ! 1 because NRQCD does not in-
clude all of the long distance modes: collinear physics is missing from the theory. An e�ective
theory which includes collinear physics was developed in Refs. [10,11]. This collinear-soft
theory describes the interactions of highly energetic collinear modes with soft degrees of
freedom. To describe � decay at the endpoint we have to couple the collinear-soft theory
with NRQCD [4]. This is analogous to B ! Xs decays at the endpoint, which was studied
in the context of e�ective �eld theory in Ref. [10]. We will closely follow the development
in that paper.

Understanding inclusive � ! X decays near the endpoint is a two-step process.2 In
the �rst step we must integrate out the large scale,M = 2mb, set by the b�b pair constituting
the �. This is done by matching onto the collinear-soft theory. In the second step collinear
modes are integrated out at a scale which is set by the invariant mass of the collinear jet. This
is done by performing an OPE and matching onto a soft theory containing operators which
are nonlocal along the lightcone and whose matrix elements are the lightcone distribution
functions, fi(k+). Sudakov logarithms are summed by using the e�ective theory RGEs.
Operators are run from the hard scaleM to the collinear scale where the OPE is performed.
The nonlocal soft operators are then run from the collinear scale down to a soft scale where
their matrix elements do not contain large logarithms. This procedure sums all Sudakov
logarithms into the short distance coeÆcient functions.

To better understand the scales involved consider the momentum of a collinear particle
moving near the lightcone. In lightcone coordinates we can write this momentum as p =
(p+; p�; p?). Since the mass of the particle is much smaller than its energy, we de�ne
p2 � M2�2, where M is the scale that sets the energy and � is a small parameter. The
lightcone momentum components are widely separated. If we choose p� to be O(M), then
p?=p

� � �, and p+=p� � �2. We refer to these two scales as collinear and soft, respectively.
To be concrete consider the b�b pair to have momentumMv�+k�, where v� = (1; 0; 0; 0) and
k� is O(�QCD) in the � center-of-mass frame. The photon momentum is Mz�n�=2, where
we have chosen �n� = (1; 0; 0; 1). In the endpoint region the hadronic jet recoiling against
the photon moves in the opposite lightcone direction n� = (1; 0; 0;�1), with momentum
p�X =Mn�=2+M(1� z)�n�=2+ k� . Thus the hadronic jet has �n � pX = p�X �M . Next note
that m2

X �M2(1� z). For (1 � z) � v2 � �QCD=M we �nd

2In Ref. [13] it was pointed out that at higher orders in perturbation theory one has to adopt a

one-step scheme similar to the one developed in a slightly di�erent context in [4].
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+ crossed diagrams+ crossed diagram

FIG. 1. Matching onto operators in the e�ective �eld theory with one and two gluons in the

�nal state.

mX �
q
M�QCD ; (11)

which is the collinear scale. This implies that for this process the collinear-soft expansion

parameter � is of order
p
1 � z �

q
�QCD=M . The soft scale is the component of the

hadronic momentum in the n direction:

n � pX � m2
X

�n � pX � �QCD �M�2 : (12)

Thus in order to sum Sudakov logarithms in �! X we �rst match onto the collinear-soft
theory atM and run operators in this theory down to the collinear scale �c �M

p
1� z. At

that scale we perform the OPE by matching onto a soft theory containing operators that are
nonlocal along the lightcone and run these operators down to the soft scale �s �M(1� z).

A. The collinear-soft theory

We �rst need to integrate out the large scale M by matching onto the collinear-soft
theory. This is done by calculating matrix elements in QCD, expanding them in powers of
�, and matching onto products of Wilson coeÆcients and operators in the e�ective theory.
For the process of interest this matching is illustrated in Fig. 1. The heavy-quark spinors and
the heavy-quark propagator in QCD can be expanded in powers of v to match onto NRQCD.
The QCD spinor is decomposed into two two-component Pauli spinors  and � for the heavy
quark and anti-quark, respectively [14].3 We also need to expand the amplitude in powers
of � to match onto the collinear-soft theory. This is done by using the power-counting rules
for the gluon �eld given in Ref. [11] and by scaling the di�erent components of the gluon
momentum as

p�g = pg � �n n
�

2
+ p�g? + pg � n �n�

2
= O(1) +O(�) +O(�2) : (13)

Omitting the straightforward but unenlightening details, the color-octet contributions match
in the � rest frame, at leading order in �, onto the operators

3Note that in Ref. [14] states are normalized relativistically.
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+

FIG. 2. Collinear and soft diagrams needed to calculate the renormalization of the vertices in

the e�ective theory.

Q�
8(

1S0) = 2igseb �
��
?

X
p

[�y�pT
a p]A

a
� ;

Q�
8(

3PJ ) = 4gseb
�
g�Æ? g

�� + g��? g�Æ � g��? �n��nÆ
� X

p

� � bp�[�y�p� � �ÆT a p]A
a
� ; (14)

where ���? = ������n�v� and g��? = g�� � (n��n� + n��n�)=2. Hatted variables are divided by
M , and the ��i are boost matrices which boost from the b�b center-of-mass frame [14]. We
have chosen factors in the operators such that at leading order the corresponding Wilson
coeÆcients satisfy

CQ
8 (

1S0) = CQ
8 (

3P0) � CQ
8 = 1 : (15)

Note that there is no color-singlet operator at this order in �, and therefore leading Sudakov
logarithms are absent in the CSM [9].

To calculate the renormalization group equations of these operators, we also need the
Feynman rules shown in Table I. They are all obtained by expanding full theory diagrams in
powers of � and v. In addition the coupling of soft gluons is given by HQET and LEET [15]
Feynman rules, and the coupling of three collinear gluons is identical to the three gluon
vertex in QCD. The renormalization is independent of the operator and the two diagrams
that need to be calculated are shown in Fig. 2. The result for the collinear and soft graphs
are

Ac =
�sCA

4�

 
4�

�2

(�1� iÆ)p2g

!�
�2(1� �)�(1 + �)

�(2 � 2�)

2 � 3�

�2
V ��a
i ; (16)

As = ��sCA

4�

 
4�

�2(�n � pg)2
(�1 � iÆ)2p4g

!�

�(1 + �)�(1 + 2�)�(1 � 2�)
1

�2
V ��a
i ; (17)

where V ��a
i = (V ��a

8 (1S0); V
��a
8 (3PJ )).

To renormalize the vertex, we expand in �, keeping only the divergent pieces. This
must equal (Z � 1)V ��a

i . Note however that Z is not the counterterm for the vertex,

rather ZO = Zh�hZ
1=2
3 Z�1Z1=2

 , where Z = 1 since we are not considering QED corrections,
Zh�h is the counterterm of the color-octet hv�hv current, and Z3 is the gluon wave function
counterterm:

Zh�h = 1 +
�sCA

4�

1

�
;

Z3 = 1 +
�s
4�

1

�

�
CA

5

3
� nf

2

3

�
: (18)

7



TABLE I. Feynman rules in the collinear-soft theory at leading order in �. The vertices

V1;8(
3S1), V1;8(

1P1) have a zero matching coeÆcient at this order.

Diagram Feynman Rule

q, ρ, cp, ν, b

k, µ, a

1
2
gsf

abcn�(2g���n � p � �n�p� � �n�p� � �n��n��n � k)

µ

α, a

V ��a
8 (1S0) = �2gseb���? �y�pT

a�p

V ��a
8 (3P0) = 4igseb(g�Æ? g

�� + g��? g�Æ � g��? �n��nÆ)

�� � bp��y�p� � �ÆT
a�p

p1, α, a

, β, bp2

µ

~V ��ab
8 (1S0) =

i
2
g2sebf

abc
�
���?

�n�

�n�p1
� ���? �n�

�n�p2

�
�y�pT

c�p

~V ��ab
8 (3PJ ) = �g2seb fabc

h
�n�

�n�p2

�
g�Æ? g

�� + g��? g�Æ � g��? n�nÆ
�

� �n�

�n�p1

�
g�Æ? g

�� + g��? g�Æ � g��? n�nÆ
�i

�� � bp� �y�p� � �ÆT
c�p

This leads to

ZO � 1 =
�s
4�

"
CA

 
1

�2
+
1

�
log

 
�2

M2

!
+
17

6�

!
� nf

3�

#
: (19)

We can check this result by matching the e�ective theory to QCD while regulating all
divergences using dimensional regularization. In this approach there is no scale in e�ective
theory loop integrals so they are zero. This leaves only the counterterm Z, which must
match the � poles in the QCD calculation. The QCD vertex at one loop can be extracted
from a calculation by Maltoni, Mangano, and Petrelli [16]. Equating the pole terms in the
QCD calculation to Z we again obtain (19).

The RGE for the Wilson coeÆcients of the operators in (14) is

�
d

d�
CQ
i (�) = Q(�)CQ

i (�) : (20)
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FIG. 3. The leading OPE: tree level matching of the time ordered product in the collinear-soft

theory to a nonlocal operator in the soft theory.

In order to make use of previous results from B ! Xs, we write the anomalous dimension
in the same form as in Ref. [17]

Q(�) = ��adjcusp log
�

mb
+
B + 2

2
: (21)

De�ning

�adjcusp =
�s(�)

�
�adj1 +

 
�s(�)

�

!2

�adj2 ; B =
�s(�)

�
B1 ;  =

�s(�)

�
1; (22)

we �nd

�adj1 = CA; B1 + 21 = �CA � �0
2
; (23)

where �0 = (11CA � 2nf )=3. At this point we can only determine the above linear combi-

nation of B1 and 1, and we do not know the expression for �adj2 . However, as we will show
below, B1 and �adj2 can be found in the soft theory. To sum the leading Sudakov logarithms
in the collinear-soft theory, we run the operator given in (14) from the matching scale � =M

down to a scale �c �
q
M�QCD at which the OPE is performed. We can lift the solution

from Ref. [11]

log
�
CV (�)

CV (M)

�
= � 4��adj1

�20 �s(M)

h1
y
� 1 + log y

i
� �adj1 �1

�30

h
1� y + y log y � 1

2
log2 y

i

�B1 + 21
�0

log y � 4�adj2

�20

h
y � 1 � log y

i
; (24)

where y = �s(�)=�s(M).

B. The purely Soft Theory

At the collinear scale �c � M
p
1 � z we integrate out collinear modes and perform an

OPE for the inclusive � radiative decay rate in the endpoint region. The result is a nonlocal
OPE in which the two currents are separated along a light-like direction. Diagrammatically
this is illustrated in Fig. 3. We write the momentum of the jet as

pX =
M

2
n� + k� +

M

2
(1 � x)�n� ; (25)

9



where k� is the residual momentum of the b�b pair. Note we distinguish x from z, because
the momentum of the jet is not exactly the same as the momentum of the collinear gluon
which was integrated out. The two can di�er slightly due to the emission of soft quanta
by the jet. The imaginary part of the tree level diagram on the left hand side of Fig. 3 is
proportional to Æ(p2x). Taking k

� �M(1�x) �M�2 and expanding in the small parameter
�, we match at leading order onto the operator

Oi(x) =
X
pp0

[ yp0�0i��p0] Æ(1� x+ iD̂+) [�y�p�i p] ; (26)

where �8(1S0) = T a and �8(3P0) = T ap��=p3. The x serves as a continuous label on the
operator.

Each operator has a Wilson coeÆcient, which can depend on the photon energy fraction z.
The di�erential decay rate is given by a convolution of the matrix elements of the operators
Oi(x) and the corresponding Wilson coeÆcients

d�

dz
=
X
i

Z
dxCi(x� z;�)fi(x;�)h�jOij�i ; (27)

where

fi(x; �) =
h�jOi(x;�)j�i
h�jOij�i (28)

are the lightcone distribution functions.
The convolution of the short distance Wilson coeÆcients and the long distance operators

presents a technical problem since the RGE forO(x) will be given in terms of a convolution as
well. We use a Mellin transform to deconvolute (27), which is equivalent to taking moments
of the decay rate. We must restrict ourselves to large moments N , since it is the limit
N !1 which is equivalent to the region z ! 1. Once the the �nal expression in moment
space is obtained we can take an inverse-Mellin transform to get back to z-space. This
procedure is valid up to corrections of order 1� z. Taking large moments of the expression
in (27) gives

�(N) �
Z
dz zN�1

d�

dz
=
X
i

Ci(N ;�)fi(N ;�) ; (29)

where

fi(N ;�) �
Z
xN�1fi(x;�) : (30)

To match onto the soft theory, we compare large moments of the di�erential decay rate
calculated in the collinear-soft e�ective theory and the soft e�ective theory in the parton
model. Large moments of the one loop expression calculated in the collinear-soft theory are
given in (A7). The one loop expression for hb�bjO(N ;�)jb�bi can be lifted from Ref. [10] with
the replacement CF ! CA:

hb�bjO(N ;�)jb�bi = 1 � �sCA

4�

�
4 log2

�N

Mn0
� 4 log

�N

Mn0

�
; (31)

10



where n0 = e�E . At the scale �c = M
q
n0=N all logarithms match, and at that scale the

tree level matching coeÆcients are

Ci(N ;�) = ~C
(0)
i

�
CQ(M

q
n0=N )

�2
: (32)

In the matrix element (31) all logarithms vanish at the scale �s =Mn0=N . To sum the
large logarithms, we therefore have to run the Wilson coeÆcient in the soft theory, Ci(N ;�),

from �c =M
q
n0=N to �s =Mn0=N . Again, we keep the notation introduced for B ! Xs

and write the RGE as

�
d

d�
Ci(N ;�) = (N ;�)Ci(N ;�); (33)

with

(N ;�) = 2�adjcusp(�) log
�N

Mn0
+B : (34)

From the results in Refs. [10,18,19] and the previous section we obtain

�adj1 = CA; �adj2 = CA

"
CA

 
67

36
� �2

12

!
� 5nf

18

#
;

B1 = �CA ; 1 = ��0
4
; (35)

where we have taken �adj2 from Refs. [18,19].
The solution to (33) combined with the running in the collinear-soft theory (24) can be

lifted directly from Ref. [17] by substituting into that result the expressions in (35). This
gives the fully resummed result in moment space

�(N) =
X
i

~C(0)
i f(N ;Mn0=N)elog(N)g1(�)+g2(�); (36)

where

g1(�) = �2�adj1

�0�
[(1� 2�) log(1 � 2�)� 2(1 � �) log(1� �)] ;

g2(�) = �8�adj2

�20
[� log(1� 2�) + 2 log(1� �)]

�2�adj1 �1
�30

�
log(1 � 2�)� 2 log(1 � �) + 1

2
log2(1 � 2�)� log2(1 � �)

�

+
41
�0

log(1� �) +
2B1

�0
log(1 � 2�)� 4�adj1

�0
log n0 [log(1 � 2�)� log(1 � �)] ; (37)

� = log(N)�s(M)�0=4�, and �1 = (34C2
A � 10CAnf � 6CFnf )=3.
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IV. RESULTS

Now that we have the resummed rate in moment space (36), we must take the inverse-
Mellin transform to obtain the expression for the photon energy spectrum. Fortunately, the
inverse-Mellin transform of the resummed rate in B ! Xs decay has been calculated in
Ref. [20], and we can use that result by simply substituting in the gi from (37). We obtain
the following for the resummed Wilson coeÆcients of the octet contribution

Ci(x� z) = � ~C(0)
i

d

dz

(
�(x� z) exp[lg1[�s�0l=(4�)] + g2[�s�0l=(4�)]]

�[1� g1[�s�0l=(4�)]� �s�0l=(4�)g01[�s�0l=(4�)]]

)
; (38)

where ~C
(0)
i = ~C

(0)
8 (1S0), ~C

(0)
8 (3P0), and l � � log(x � z). Each Ci(x � z) is evaluated at

the soft scale so that all leading and next-to-leading Sudakov logarithms have been summed
into it.

One way of checking (38) is by expanding in powers of �s and comparing to the �xed
order calculation. Using 

logn(1 � z)
1� z

!
+

= lim
�!0

"
�(1� z � �)

logn(1� z)

1� z
+ Æ(1� z)

logn+1(�)

n+ 1

#
; (39)

as the de�nition for plus distributions it is straightforward to verify that the order �s term
in the expansion of (38) reproduces the plus distributions in (10).

Recall that the covariant derivative in (26) is of order �QCD=M . If we consider the limit
1 � z � �QCD=M , then the covariant derivative in the operator appearing in the structure
function can be neglected. In this limit we can perform the integral in (27) to obtain

d�

dz
=
X
i

Ci(1� z) : (40)

This result gives the e�ect of the perturbative resummation without the structure function.
The quantity Ci(1 � z)= ~C(0)

i , which is the same for the two leading octet con�gurations, is
shown as the dashed line in Fig. 4.4

However, for the b�b system mv2 � �QCD so the covariant derivative cannot be dropped
in the endpoint region of the photon spectrum, and the di�erential rate is given by the
convolution in (27). The lightcone distribution function is a nonperturbative function and
needs to be modelled. In this paper we will be content with the simple structure functions
introduced in Ref. [22] for inclusive B decays

f(k+) = N

 
1� k+

��

!a
e(1+a)k

+=�� ; (41)

where N is chosen so that the integral of the structure function is normalized to one. In
principle the structure function can be di�erent for the di�erent color-octet states. But

4The Landau pole in (38) should be dealt with in the same fashion as in the B decays [21].
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FIG. 4. The di�erential decay spectra near the endpoint region 0:7 < z in arbitrary units. The

solid curve is the perturbative resummation convoluted with the structure function and the dashed

curve is the perturbative resummation Ci(1 � z)= ~C(0)
i . The dotted curve is the plus distribution

terms in the one-loop result (10), and the dot-dashed curve is these terms convoluted with the

structure function.

since we are ignorant of the nonperturbative structure function, we will naively use the
same model for both the 1S0 and 3P0 con�gurations. The structure function for B mesons
have the property that the �rst moment with respect to k+ vanishes. For quarkonium the
�rst moment of (28) (where x = 1 + k̂+) with respect to k̂+ is

�1 =
h�jPp;p0[�y�p0T a�i p0]iD̂+[ ypT

a�i��p]j�i
h�jPp;p0[�y�p0T a�i p0][ ypT a�i��p]j�i

: (42)

Therefore, we need to shift k+ in (41) to k+ + �1, so that (41) will have the desired �rst
moment for quarkonium decays. The integration limits for k+ are, similar to the case for
B decays, from �M to M� �M . Both �� and �1 are nonperturbative parameters related
through �� =M��M��1. We use the following numbers in our plots: �s = 0:2, � = 1=137,
mb = 4:8GeV, M� = 9:46GeV, a = 1, �� = 480MeV, and �1 = �620MeV.

In Fig. 4 the convolution of Ci(x� z)= ~C(0)
i with the model of the structure function (41)

is shown as the solid line. In addition we show as the dotted line the terms in the NLO QCD
expression that dominate in the endpoint region (10) divided by ~C

(0)
i , and as the dot-dashed

line the convolution of these terms with (41). Thus Fig. 4 gives a picture of the e�ects of
resummation. The singular plus distribution piece of the NLO QCD expression is tamed by
both the perturbative resummation and the structure function. Either of these alone gives
a similar curve, which is peaked near z = 0:94. However, to be consistent the perturbative
resummation must be convoluted with the structure function. This gives a curve that is
broader, with a peak that is 34% lower and shifted to z = 0:87. Changing the values of the
structure function parameters changes the shape of the curve. Halving the value of �� gives
a narrower peak that is 30% lower and shifted to z = 0:83. If �s is increased by 10% the
peak moves slightly to the left and decreases in height by 5%. Doubling the value of a in
(41) slightly raises the peak, and steepens the curve as it goes to zero at the endpoint.
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FIG. 5. The di�erential decay spectra in the region 0:5 < z. The dashed curves are the fully

resummed result convoluted with the shape function for two choices of the octet matrix elements.

In addition we have interpolated the fully resummed result with the NLO result in the region away

from the endpoint. The dotted curves are the NLO result convoluted with the structure function for

two choices of the matrix elements. The solid curve is the color-singlet contribution.

In Fig. 5, we show as dashed curves the fully resummed color-octet contribution convo-
luted with the structure function for two choices of the matrix elements. We also show as the
solid curve the color-singlet contribution. Here we used h�jO1(3S1)j�i = 3:63 GeV3 [23].
The values of the color-octet matrix elements are not well determined. One may be tempted
to use a naive power-counting argument which gives h�jO8(1S0)j�i � h�jO8(3P0)j�i=m2

b �
v4h�jO1(3S1)j�i, with v2 � 0:1. However, this gives values for the color-octet matrix el-
ements that are too large to be compatible with data on the ratio of hadronic to leptonic
decays [5]. The data suggest that the octet matrix elements are at least an order of mag-
nitude smaller than the naive power-counting estimate. Therefore, we use values that are
10 times and 100 times smaller than estimates from naive power counting, with the larger
matrix element yielding the higher peak.5 We have added to the resummed result the NLO
QCD result with the singular terms (10) subtracted o�. This interpolates between the NLO
QCD expression at lower values of z and the resummed result in the endpoint region. For
comparison we show as the dotted curves the NLO QCD contribution [5] convoluted with
the shape function for the two choices of the color-octet matrix elements.

Since the octet contributions dominate the color-singlet contribution in this endpoint
region (or at least are of the same order of magnitude) it should be possible to use this process
to constrain the size of the color octet matrix element. The suppression of the matrix element
compared to the naive power counting estimate makes a measurement of this matrix element
particularly interesting and might shed some light on the convergence of the v expansion

5In Ref. [24] it was argued that a factor of 1=2Nc should be included in a naive estimate of the

color-octet matrix elements. The larger of our two choices for this matrix elements is of the same

order of magnitude as this modi�ed naive estimate.
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in NRQCD. However, before a meaningful comparison of theory to data on radiative �
decay can be made, subleading Sudakov logarithms in the color-singlet contribution must
be summed. The existence of these logarithms was �rst pointed out in Ref. [9] where it was
observed that though leading Sudakov logarithms cancel in the color-singlet contribution to
the di�erential rate, they are present in the derivative of the rate at the endpoint. We leave
the resummation of these logarithms to a future publication [25].

V. CONCLUSION

Using an e�ective �eld theory approach, we have resummed Sudakov logarithms in the
leading color-octet contributions to the � ! X di�erential decay rate in the endpoint
region. This is done in two steps. First we match onto an e�ective theory with collinear
and soft degrees of freedom and run the theory to the collinear scale. Next we integrate out
collinear modes by performing an OPE, matching onto non-local operators which are run to
the soft scale. This sums all Sudakov logarithms into Wilson coeÆcients of these operators.
The color-octet contribution to the di�erential decay rate in the endpoint region is given by
the convolution of the Wilson coeÆcients with matrix elements of the operators between �
states. The latter are the color-octet structure functions de�ned in Ref. [7].

We choose a simple model for the structure functions to investigate the phenomenological
consequences of resummation. We �nd that either the perturbative resummation or the
inclusion of a structure function cures the singular behavior of the QCD results. Both give a
similar e�ect, causing the curve to turn over near z = 0:94 and to go to zero at the endpoint.
However, the e�ective �eld theory approach makes it clear that the correct expression for the
di�erential rate near the endpoint is given by a convolution of the perturbative resummation
and the structure function. This gives a spectrum that has a broader and lower peak than
we obtain by including only perturbative resummation or the structure function, shifting
the peak to z = 0:87.

Before a meaningful comparison to data can be made the color-singlet result must be
resummed as well. Only then can data on the decay spectrum be used to constrain the size
of the octet contribution in the endpoint region [25].
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APPENDIX A: FORWARD SCATTERING MATRIX ELEMENT

Matching the forward scattering matrix element in the QCD and collinear-soft theory
gives an important check that we are reproducing the infrared physics of the full theory. We
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have already calculated the vertex corrections. Note that there are two contributions from
the vertex loops so the vertex contribution to the forward scattering matrix element is twice
that given in (16). There is a contribution to the forward scattering matrix element from a
ladder graph, which we have not evaluated yet. It gives

M` =
�sCA

2�

 
4�

�2(�n � pg)2
(�1� iÆ)2p4g

!�

�(1 + �)�(1 + 2�)�(1 � 2�)
1

�
M0 ; (A1)

where

M0 = ~C(0)
i

M2

p2g � iÆ
(A2)

is the tree level amplitude, and p2g =M2(1� z). In addition there is a contribution coming
from virtual corrections to the collinear gluon propagator, which include the fermion, gluon,
and ghost loops,

MZ3 =
�s
4�

�
5

3
CA � 2

3
nf

� 
�2

(�1� iÆ)p2g

!�
1

�
M0 : (A3)

Adding all contributions gives the full one-loop corrections to the forward scattering ampli-
tude

Mlg =
�s
2�

(
CA

"
1

�2
+
1

�
log

 
�2

M2

!
+
17

6�

#
� nf

3�
+
CA

2
log2

 
�2

M2

!
+
17CA

6
log

 
�2

M2

!

� nf
3
log

 
�2

M2

!
� CA log

2[(1� z)(�1� iÆ)]� CA
23

6
log[(1� z)(�1� iÆ)]

+
nf
3
log[(1� z)(�1� iÆ)]

�
M0 + : : : ; (A4)

where the ellipses represent terms of order �s not enhanced by logarithms.
Next add the counterterms. There is a gluon propagator insertion that gives �M0(Z3�

1). The vertex insertion is Zh�hZ
1=2
3 Z�1

O . In order to facilitate the comparison with the
results in Ref. [5], we use dimensional regularization to regulate the infrared divergences in
the heavy quark sector, and therefore Zh�h = 1. Adding all the counterterms cancels the �
poles in (A4), leaving

Mlg =
�s
2�

(
CA

"
1

2
log2

 
�2

M2

!
+
17

6
log

 
�2

M2

!#
� nf

3
log

 
�2

M2

!
� CA log

2[(1� z)(�1� iÆ)]

� CA
23

6
log[(1� z)(�1� iÆ)] +

nf
3
log[(1� z)(�1� iÆ)]

�
M0 + : : : : (A5)

To obtain the di�erential decay rate we take �1=� Im(A5) using

�1
�
Im

log[(1� z)(�1� iÆ)]
1� z + iÆ

=
�

1

1 � z
�
+
;

�1
�
Im

log2[(1� z)(�1� iÆ)]
1� z + iÆ

= 2

 
log(1 � z)
1� z

!
+

� �2Æ(1� z) : (A6)
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Comparing to Ref. [5] (taking the limit z ! 1 in their expressions), we con�rm that at
the matching scale � = M the e�ective theory reproduces the plus distributions in the full
theory. Taking large moments of the imaginary part of (A5) gives:

� 1

�

Z
dz zN�1 ImMlg =

�s
2�

(
CA

"
1

2
log2

 
�2

M2

!
+
17

6
log

 
�2

M2

!#
� nf

3
log

 
�2

M2

!
(A7)

�CA log
2
�
N

n0

�
+ CA

23

6
log

�
N

n0

�
� nf

3
log

�
N

n0

��
~C(0)
i + : : : :
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